Problem
Show that xF(1,1,2;−x)=ln(1+x).
Solution
Step 1: Expand the Hypergeometric Series
Here α=1, β=1, γ=2. Replace x with −x.
F(1,1,2;−x)=1+1⋅21⋅1(−x)+1⋅2⋅2(3)1(2)⋅1(2)(−x)2+⋯
Step 2: Simplify terms
- Term 1: 1
- Term 2: 21(−x)=−2x
- Term 3: 2⋅62⋅2x2=124x2=3x2
- Term 4: 6⋅2(3)(4)1(2)(3)⋅1(2)(3)(−x)3=−4x3
So:
F(1,1,2;−x)=1−2x+3x2−4x3+⋯
Step 3: Multiply by x
xF(1,1,2;−x)=x−2x2+3x3−4x4+⋯
Step 4: Identify the Maclaurin Series
This series is the standard expansion for ln(1+x).
Therefore:
xF(1,1,2;−x)=ln(1+x)
Q.E.D.